Quantcast
Channel: Chaos Folded
Viewing all articles
Browse latest Browse all 10

Prime de illuminati

$
0
0

Recently, when someone with the nickname Pr1me came into one of the German IRC channels I’m in, I pointed out that 1 is not a prime number. He should pick the nickname Pr11me instead.

Of course, I was just joking, but out of curiousity, I looked for larger prime numbers consisting only of decimal 1s, and I found the following numbers to be prime:

  • 11 (2 digits)
  • 1111111111111111111 (19 digits)
  • 11111111111111111111111 (23 digits)

I looked further, again just out of curiosity, to find the following interesting numbers, which are not prime:

  • 11111111111111111111111111111111111111 (38 digits)
  • 111111111111111111111111111111111111111 (39 digits)
  • 1111111111111111111111111111111111111111111111 (46 digits)

The first number is interesting, because it is 38 digits long and contains the 19 (= 38/2) digits number 1111111111111111111 as a prime factor. This is interesting in that it’s a highly unlikely case (considering the random nature of prime numbers), that a prime factor consisting only of repetitions of a single digit is found in just another number of that form, and that the prime factor has exactly half the digits of the composite number.

The second number has the curious-looking prime factor 900900900900990990990991.

Finally the third number has 46 digits and is a product including the 23 digits prime factor 11111111111111111111111. The probability for that to happen for a 38 digits number is already very low. It is even orders of magnitude lower for a 46 digits number.

I’m not a fan of conspiracy theories, but this is surely curious. The 46 digits number is, by the way, the largest number of that form I have found. You can come up with many ways to relate that number to the (prime) number 23, some of which are very interesting.

Update: Robert Smith (quadricode at gmail com) took this further and observed the following curiosity: In any number base he tested, a number consisting entirely of repetitions of the digit 1 would only be prime, if the number of digits is itself prime. This may be a generalization of Mersenne primes. Let’s see if we can prove this.

Comments

Frank Dreßler:

  1. 111…111_b = Sum[b^i,{i,0,n–1}] = (b^n–1)/(b–1)
  2. (x - 1)|(x^y - 1), because of: x^y - 1 mod x - 1 = 1^y - 1 = 0
  3. n not prime => n = n1*n2
  4. b^n - 1 = b^(n1*n2) - 1 = (bn1)n2 - 1 = (bn2)n1 - 1 => (b^n1 - 1)|(b^n - 1) and (b^n2 - 1)|(b^n - 1)
  5. b^n - 1 = k1 *(b^n1 - 1) = k2 *(b^n2 - 1) = k1*k10*(b - 1) = k2*k20*(b - 1) <=> (b^n - 1)/(b - 1) = k1*k10 = k2*k20
  6. None of the k’s is 1 => (b^n - 1)/(b - 1) is a composite number, thus 111…111_b of length n is composite, too, if n is composite and b arbitrary.

Wer kann mein Freund sein, der seine Heimat im Stich lässt und in meine eindringt, denn er wird ja auch meine im Stich lassen, sind die Zustände hier eines Tages vielleicht einmal so wie sie es in seiner Heimat waren. Du sollst dich um deine wahre Heimat sorgen, denn laufen alle vor dem Bösen davon, ist irgendwann die ganze Welt böse und fängt nie eine Blume an, im Unkrautbeet zu blühen, wird das Unkrautbeet niemals ein wunderschönes Blumenmeer. Wie soll ich meinen Kindern Treue beibringen, ist das Land doch voller Leute, die Treue vergessen, sobald es irgendwo mehr zu holen gibt. Wir sind Feinde, weil ich ein soverhetzter Nazi bin, aber über Mathematik und so können wir dennoch quatschen.

Schönen Tag noch!

December 10, 2008 8:53 PM

ertes:

Thanks for your comment!

To your German comment: In einer globalisierten Welt kann man diese klare Unterscheidung, wie es sie früher gegeben hat, nicht mehr so leicht treffen. Ich bin niemals längerfristig woanders gewesen als hier. War ich es, fühlte ich mich unwohl und wollte zurück. Das liegt aber nicht daran, dass hier mehr zu holen ist. Woanders gehöre ich einfach nicht hin. Ich weiß nicht, ob du ‘Leute wie mich’ gerne loshättest. Wenn ja, dann ist das halt so, und ich könnte wahrscheinlich (zumindest über Blog-Kommentare) eh nichts daran ändern. Du solltest aber eines differenzieren: Selbst, wenn ich ungebeten bin — ein Gast bin ich nicht, und ich trage auch zu deinem Wohl bei.

Ohne dir zu nahetreten zu wollen: Du solltest deine Beurteilungen und Entscheidungen nicht (allein) auf formale Merkmale basieren. Ich bin schließlich auch nicht mit allem einverstanden, was manche Leute hier tun; und damit meine ich keineswegs die “soverhetzten Nazis”. Meine Beurteilung kommt allerdings von ihrem Tun, nicht von ihrem Reisepass.

Grüße,
Ertugrul.

December 12, 2008 1:06 AM

nbloomf:

You could probably prove that 11…1 is prime when the number of digits is prime by appealing to the irreducibility of the cyclotomic polynomials in Z[x]. For prime p, the pth cyclotomic polynomial is phi_p(x) = 1 + x + x^2 + … + x^(p–1), which evaluated at 10 is 1…1 with p digits. If phi_p were reducible we’d have a factorization of 1…1, and vice versa (i think- it’s late).

December 29, 2008 5:16 AM

Frank Dreßler:

I have found a website about those prime numbers by accident while solving another problem.

http://primes.utm.edu/glossary/page.php?sort=Repunit http://en.wikipedia.org/wiki/Repunit

Gruß,
Frank Dreßler

December 29, 2008 6:52 AM

ertes:

Indeed, these things are already known — though reinventing the wheel is probably done on a regular basis in mathematics.

About proving primality through polynomial irreducibility, I don’t know a polynomial irreducibility test that is faster than prime number tests. Also consider this: with x = 10, 15 = x + 5. Although x + 5 is irreducible, 15 is not prime.

December 29, 2008 3:55 PM

rgs26:

Let’s call n 1s 1{n}. Then:

1{38} is /obviously/ divisible by 1{19}, since it’s 1{19} * (10^19 + 1).

More generally, 1{mn} is divisible by 1{m} and 1{n} (it’s 1{m} * sum for k = 1 to n of 10^(m*k)). So 1{p} is prime => p is prime.

As a corollary, if 1{p} is prime, then 1{ap} has 1{p} as a factor for all a in N.

December 20, 2009 6:43 PM


Viewing all articles
Browse latest Browse all 10

Trending Articles